
An Edge Networking
Playbook

by Brian Pane

August 23, 2024

Copyright © 2024 by Brian Pane

This work is licensed under CC BY-ND 4.0.

The diagrams in Chapter 1 incorporate public
domain maps from Wikimedia Commons.

2

https://creativecommons.org/licenses/by-nd/4.0/
https://commons.wikimedia.org/

Contents

Acknowledgements	 4

1. Introduction	 5

2. Edge Network Basics	 9

3. Roadmap	 15

4. Real User Monitoring	 18

5. Planning Edge Services	 21

6. PoP Site Selection	 27

7. Network Connectivity	 29

8. Edge Software Services	 37

9. Traffic Steering	 42

10. Rollout and Operation	 48

3

Acknowledgements
More than a decade ago, I stumbled into the world of edge networking.
Coming from a software background, I was looking for new ways to
make applications faster. As I began to build edge services, I grew to
appreciate how broad the field was, with people from vastly different
areas of expertise coming together to solve hard problems. Over the
years, I was fortunate to learn a lot from my colleagues across many
companies.

In the process of writing this book, I was reminded of the power of the
community. I thank all the volunteer reviewers who helped shape the
content and shared new learnings with me in the process: Alexey
Ivanov, Charles Thayer, Harshiva Matcha, Hossein Sahabi, Ian Holsman,
Liuyang Li, and Naveen Achyuta.

Brian Pane
August, 2024

4

1. Introduction
Audience

This book describes how and why to use networking technologies to
make online services faster on a global scale. It is written for people
working in the diverse roles that come together to make such
endeavors possible: engineering teams who build the software and
networks, finance teams who guide the capital planning, legal teams
who navigate the risks, executives who drive the strategic tradeoffs, and
program managers who coordinate it all.

Background

People increasingly depend on online applications for everything from
communication to entertainment to commerce. These applications are
complex and diverse, but most follow the pattern shown in Figure 1: the
user interacts with some client software (web browser, phone app, etc.)
that communicates over the Internet with backend services run by the
application provider organization.

Figure 1: Online application

From the user’s perspective, life is better when this communication is
fast and reliable. If a ride-hailing app starts up and finds a driver quickly,
the passenger can get to the airport on time. If a brokerage app submits
trades quickly, the client can react to a rapidly changing market. If an
online game has a responsive, low-lag connection, the player can avoid
the ignominy of losing to a novice competitor.

Making an online application faster is beneficial for the application
provider, too. Many companies have found via A/B testing that their
product KPIs improve when they accelerate key user interactions. When
a search engine delivers results more quickly, for example, users

5

conduct more searches. When an e-commerce website’s pages load 1

more quickly, more users complete the checkout process; one study
found that a 100 millisecond speedup across key use cases produced an
8% increase in conversions. 2

Often, a popular online application will attract users all around the
world. This creates a challenge for the application provider: how to
make the application’s client-to-server interactions fast for users located
far away from the backend servers and data. Figure 2 shows an example
where the online application, having started out with its backend
systems in a datacenter in North America, has become popular with
users in other continents.

Figure 2: Online application with users distributed around the world

Figure 3 shows typical network Round Trip Time (RTT) measurements
between a datacenter in Ashburn, US and each of the user locations
from Figure 2.

 Speed Matters, Google, 20091

 Milliseconds make Millions, Deloitte, 2020 2

6

https://research.google/blog/speed-matters/
https://www.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf

Figure 3: Network round trip times 3

The RTT represents the minimum time it will take the online application
to process any operation that requires a call from the user’s client
software to the backend datacenter. If the user gets a higher-bandwidth
Internet connection and a faster computer, or the application provider
upgrades their datacenter with faster servers and better-optimized
software, the RTT still will not get any faster. And some common
interactions will take many round trips (Chapter 2 covers the details).

In addition, the network path between any of those client locations and
the backend datacenter may run through multiple third-party providers
with unpredictable performance and reliability. That results in even
worse performance than the RTT numbers suggest.

Approach

Given these challenges, how can the application provider deliver a
faster user experience? One approach is to clone the backend systems
and deploy them in datacenters throughout the world, so that each
user can interact with a closer datacenter. In practice, though, the
number of backend datacenter locations is limited by cost, operational
complexity, application complexity (especially for workflows that
require strong consistency for replicated data), and geopolitical issues.
As a result, even organizations with very large global footprints do not
have backend datacenters in every country where they have users. 4

Therefore a common way to improve the application user experience is
by using an edge network: a combination of networking and software
infrastructure located closer to the users that makes the application
faster. Figure 4 shows an example: when the user in France interacts

Location
Typical RTT in msec

to Ashburn, US

Paris, FR 75

Asuncion, PY 180

Seoul, KR 195

Melbourne, AU 210

Cape Town, ZA 220

 Public measurements from WonderNetwork, May 20243

 See, for example, Meta's and Amazon's datacenter locations.4

7

https://datacenters.atmeta.com/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://wondernetwork.com/pings/

with the online application, the network communication flows through
a London Point of Presence (PoP) operated by the application provider.

Figure 4: User interacting with a local Point of Presence

An edge network consists of many PoPs distributed throughout the
world. Each PoP contains networking equipment and possibly also
servers and storage, depending on the nature of the online
application(s) it serves. This infrastructure can do several things to
improve the user experience: serving some parts of the application
locally, caching popular content, accelerating network protocols, and
providing a faster, more reliable network path for the interactions that
need to go all the way to the backend datacenter.

Edge network capabilities can be obtained either by building one’s own
infrastructure or by purchasing hosted services from third parties. The
right choice — which often will be a hybrid of building and buying —
depends in large part on the application provider’s size, capabilities, and
priorities.

Chapter 2 explains how edge networks function. Chapter 3 lays out a
roadmap for application providers who want to develop edge network
capabilities, and the subsequent chapters explore each step of the
roadmap in more detail.

8

2. Edge Network Basics
Reference Architecture

Figure 5 presents a high level reference architecture for an edge
network. Later chapters will zoom into various parts of this model.

Figure 5: Edge network reference architecture

Physical Facilities

Application providers usually build their PoPs in rented space inside
colocation datacenters (“colos”). There are multiple reasons for hosting
in someone else’s existing facility, rather than building one’s own edge
datacenter from the ground up. First, the lead time is much shorter. In
addition, the amount of floor space needed for a PoP is often too small
to justify building a new datacenter. Finally, one of the most important
functions of a PoP is to connect the application provider to external
networks, and this interconnection becomes easier if the PoP is located
in a multi-tenant facility where many other Internet providers already
have a presence. Chapter 6 covers site selection in more detail.

As shown in Figure 5, the client sends requests (the leftmost grey
arrow) to the application provider’s PoP. If needed, these requests can
flow over the open Internet, through third party networks. But the

9

application provider can achieve better performance and reliability by
establishing a direct connection to the client’s ISP in the colo facility.
Typically, the PoP also will connect to a backbone network that links all
of the application provider’s sites together. By bypassing the open
Internet for most or all of the distance between the client’s ISP and the
application’s backend servers, this technique can improve reliability and
performance: even though the best-case latency is still dominated by
the speed of light, the common case may be substantially improved.
Chapter 7 discusses the connectivity options.

For the application provider, an alternative to building an edge network
is to purchase services from a third party. Content Delivery Networks
(CDNs) and general-purpose cloud providers offer various edge services
with pricing based on usage. In general, building and operating one’s
own edge network is cheaper at large scale but has nontrivial fixed costs
in the form of both the physical infrastructure and the people’s time
needed to manage it. In contrast, buying edge services from a third
party often results in a higher unit cost of capacity, but with the
flexibility of little or no fixed cost. The right choice will vary based on
the size and goals of the application provider organization.

Edge Software Services

Depending on the specifics of the online application, it may also make
sense to run software services in the PoPs (aka “at the edge”).

Proxying

Chapter 1 introduced the notion that network RTT is a lower bound on
the time needed for any synchronous, client-to-server interaction in an
online application. In practice, necessary protocol overhead often adds
additional round trips.

For example, the transport protocols commonly used by online
applications provide secure and reliable delivery of data, but they
require some initial back-and-forth communication before the
application can start sending the first message. Figure 6 shows this
startup overhead for various popular protocols.

10

Figure 6: Overhead of secure session setup 5

Client application developers know that new connections are slow, so
they use techniques like connection pooling to reuse existing
connections for subsequent messages. However, during application
startup and in other scenarios where the client app needs a new
connection, the additional round trips for protocol setup are inevitable. 6

Even after a connection is established, the RTT still acts as a limiting
factor. The two most commonly used transport protocols, TCP and
QUIC, both use a slow start strategy: on a new connection, they send
only a small amount of data, because they do not yet know how
unreliable or overloaded the network path might be. When the other
end of the connection acknowledges that it has received this data, the
sender grows more confident and sends a bigger block. This process
continues for multiple iterations, each taking one RTT, until the amount
of data being sent (the congestion window, in protocol lingo) is large
enough to make good use of the available bandwidth. The bigger the
RTT is, the longer it takes the connection to ramp up to full speed.
Figure 7 shows an example of slow start for a data transfer over a new
TCP connection with an RTT of approximately 50 milliseconds; it takes
over a second for the connection to ramp up to full speed.

Transport Protocol
Round Trips for
Protocol Setup

TCP with TLS 1.2 3

TCP with TLS 1.3 2

QUIC 1

 HTTP versions up through and including HTTP/2 use TCP + TLS, while HTTP/3 uses QUIC.5

 TLS 1.3 and QUIC offer a “zero-RTT” mechanism that makes it cheaper to establish additional 6

connections after the first. Such protocol optimizations, where available, are complementary to the edge
proxying speedups described in this playbook.

11

Figure 7: TCP slow start example 7

Given these impacts of RTT on application performance, a simple but
effective service to add to PoPs is a proxy, which intermediates the
protocol communication between the client and backend apps. Figure 8
shows the basic operation. Instead of talking directly to the backend
services, the client connects to the proxy in a nearby PoP. The proxy
maintains a pool of reusable, secure connections to the backend app.
Whenever the proxy receives a message from the client, it forwards the
message to the backend app over one of the pooled connections.

Figure 8: Edge proxy

 Data captured and plotted using Wireshark 7

12

https://www.wireshark.org/

The communication between the client app and the proxy still has to
make all the round trips required by the transport protocol. However,
these round trips happen over a smaller RTT, because the PoP is close to
the client. And when the proxy forwards messages to the backend
application far away, the use of a preexisting connection lets it avoid the
extra round trips for connection establishment and slow start.

With a secure protocol like TLS or QUIC, the proxy in the PoP must
decrypt and re-encrypt the messages passing between the client and
the backend services. This adds a nontrivial engineering challenge: the
proxy implementation needs to be especially secure. However, once a
secure proxy is in place, its ability to see messages flowing between the
client and the backend servers can help solve other problems. For
example, if different users’ data is homed in different backend
datacenters, the proxy may be able to look at cookies in the incoming
requests to choose the right destination for each user. Or, if the proxy
sees a suspiciously large volume of incoming requests for a registration
form, it can implement rate-limiting at the edge. Chapter 8 discusses
the challenges and opportunities in more detail.

Caching

Proxying through a PoP can accelerate the client app’s communication
with the backend services. An even bigger performance win is possible
in cases where the PoP can satisfy a request from the client without
having to call the backend at all. In online applications, it is common to
have data that many or all of the clients need to fetch: graphics and
stylesheets, JavaScript libraries, configuration updates, news feeds,
recommendations, and so on. The proxy software in the PoP can cache
this data for fast delivery to the client.

Edge Application Services

Depending on the application, it may be possible to run some or all of
the backend services in the PoPs. This provides an additional
performance benefit, but with a significant caveat: any service deployed
into PoPs becomes a globally distributed system, with a high latency
between its components. Some services work well in that environment,
but many do not. In addition, hosting servers in PoPs tends to be more
expensive than in backend datacenters. Some examples of services that

13

can work well at the edge are autocompletion (but usually not full-scale
search engines), ML inference (but usually not ML training), game
engines, chat servers, and logging (and some streaming analytics
processing). Chapter 5 provides some recommendations on choosing
which services to run at the edge.

14

3. Roadmap
Figure 9 shows the sequence of major steps needed to plan and build a
new edge network.

Figure 9: Edge planning and execution roadmap

Set up real user performance monitoring (Chapter 4)

The first step in developing an edge network strategy is to
measure and understand the network performance as
experienced by the users of one’s online application. This will
help guide and justify the subsequent investments, and the data
often will be useful in ongoing operations.

Choose the services to put at the edge (Chapter 5)

The next step is to decide which services to run in the PoPs: just
routing, for example, or proxying and caching, or even part or all

15

of the backend application. The selected services will determine
what type of equipment the PoPs need, and with how much
capacity, and this information will feed into site selection.

Sometimes this analysis will indicate point toward different
priorities. For example, if a critical application workflow consists
of one second of network communication and ten minutes of
computation, the network is not the first thing that needs
engineering attention. Or, if the client is using inefficient
network protocols to talk to backend services, fixing that first
(e.g., by replacing HTTP/1.1 + TLS 1.2 with HTTP/2 + TLS 1.3 or
QUIC) will provide an interim win that will also work well with a
future edge network.

Choose PoP locations (Chapter 6)

Edge site selection is the process of finding PoP locations with
the right balance of proximity to users, connectivity to the rest
of the Internet, available capacity, and cost. In some cases, the
easiest solution may be to purchase edge services from a third
party CDN instead of building one’s own PoPs. Country-specific
regulations and taxes also are also a factor, so the site selection
process requires a multidisciplinary team to analyze the
financial, legal, and engineering details.

Connect the networks (Chapter 7)

After choosing PoP locations, the next step is to arrange for the
needed network connectivity at those sites. This often will be an
ongoing project, starting with a couple of connections to the
Internet and then incrementally adding private connections to
different ISPs to further improve speed and reduce cost.

16

Build or buy the edge services (Chapter 8)

If the edge plan includes services such as proxying and caching,
developing or acquiring the needed software will take time.
Chapter 8 provides high-level software guidance for
implementors.

Build or buy a traffic steering mechanism (Chapter 9)

The performance benefits of edge networking all depend on the
idea that users will somehow talk to the nearest PoP. The
technologies that make this actually happen are collectively
known as traffic steering. There are many design options, each
with distinct tradeoffs to evaluate.

Launch, monitor, and optimize (Chapter 10)

Launching an edge network is a significant investment of time
and money in pursuit of a quantitative goal: improving
application speed and dependent product metrics. Therefore it
is important to use a metrics-driven approach to ensure that the
investment is yielding the expected results.

In addition, most edge networks start out small and then grow
incrementally over time: more countries, more PoPs, more
network connectivity, more software features. The same type of
quantitative approach that has informed the initial build can be
used to guide future expansion.

17

4. Real User Monitoring
Before building an edge network to improve network performance, it is
important to have monitoring that accurately measures the
performance — from the perspective of online application’s users.

There are third-party monitoring services that repeatedly send requests
to one’s web endpoints from hundreds of agents in datacenters around
the world to track response speed, but these services generally do not
have enough coverage to fully represent last-mile performance as seen
by end users. A better approach is to implement Real User Monitoring
(RUM): network performance measurement from the application’s
actual clients. Figure 10 shows the major components in a RUM system.

Figure 10: Real User Monitoring

18

The client application periodically measures the RTT from its location to
the PoPs and backend datacenters. If the application performance
depends heavily on other aspects of network performance, such as
throughput, the client can measure those too. The client app reports its
measurements to a central collector service. (If the client uses a web
browser instead of a custom app as its user interface, this same
measurement and reporting can be done in JavaScript in a web page.)

The collector service aggregates the data from many clients, grouping it
by various dimensions to support both long-term planning and day-to-
day operations. The data collection and aggregation run continuously,
because performance will change over the course of a day (e.g., worse
during peak hours due to network congestion) as well as over longer
stretches of time (e.g., worse as user growth creates congestion, or
better when the network capacity is upgraded).

For edge network planning, aggregating the RUM data by geography
will show high-level patterns: “our users in country X have a median RTT
of 200 milliseconds to our backend datacenter, so we should consider
building a PoP in that region.” In addition, aggregating based on a
hierarchical geo-encoding such as Geohash makes it easy to display
performance patterns on a map.

A secondary grouping by client Autonomous System (AS) will show
additional insights. An Autonomous System is a group of subnetworks
managed under a single administrative domain. In practice, this usually
means an ISP or other company or organization, although some
organizations have their networks divided into multiple Autonomous
Systems. Aggregating the RUM data by AS will reveal things like, “the 8

median RTT in city Y is 50 milliseconds for users on this ISP but 200 for
this other ISP, so we should diagnose whether the second one is due to
a routing problem.”

Another common aggregation of RUM data is by client IP prefix: “users
coming from 203.0.113.0/24 have a median RTT of 150 milliseconds.” 9

 RFC 1930 provides an official but still vague definition: “An AS is a connected group of one or more IP 8

prefixes run by one or more network operators which has a SINGLE and CLEARLY DEFINED routing
policy.” For RUM data analytics, it is almost always sufficient to treat AS as a shorthand for “the user’s
ISP.”

 For readers who are not network engineers, that notation 203.0.113.0/24 means “the range of IPv4 9

addresses that start with 203.0.113.” For readers who are network engineers, the example addresses in
this playbook are from the documentation ranges reserved in RFC 3849 and RFC 5737.

19

This view of the data can be used programmatically to drive some forms
of traffic steering (Chapter 9). Also, because Internet routing operates
on IP prefixes, grouping the performance data this way can help with
troubleshooting.

The RUM data stream can be a good source of fine-grained availability
signals, too. Observations like “users on ISP X cannot reach our PoP in
Singapore at all” can help network engineers detect and triangulate
problems. And traffic steering systems can use this availability
information to avoid sending clients to PoPs they cannot reach.

20

5. Planning Edge Services
Chapter 2 introduced several types of services that can be implemented
in PoPs: routing, proxying, caching, and hosting miscellaneous
application features.

The next steps in edge network planning are to select which of these
services are appropriate for one’s online application and to conduct
initial capacity planning for those services. This will inform the
hardware design (Chapter 7), site selection requirements (Chapter 6),
and software development plan (Chapter 8).

Routing

Things to determine in this phase of the planning:

• What are the external networks with which the online application
exchanges the most data in each part of the world?

• How much external network bandwidth will be needed between each
PoP and the rest of the internet?

• How much backbone network bandwidth will be needed between
each PoP and the application provider’s other sites?

To answer these questions, the application provider can analyze either
network flow data (if available) or application logs.

Proxying

Things to determine in this phase of the planning:

• Is proxying useful for the online application?

• If so, how much server capacity does each PoP need for proxying?

If, as described in Chapter 2, the client application spends a lot of time
making new connections to backend applications (after fixing any low-
hanging fruit in the implementation) and it is infeasible to run those
applications at the edge, proxy servers in the PoPs can help.

To forecast how much server capacity is needed to run the proxies in a
PoP, a reasonable starting point is:

21

CPU cores needed =	 (rps / rps-per-core +
	 	 	 	 	 (100% - conn-reuse) / cps-per-core) *
	 	 	 	 (100% + redundancy-amount) *
	 	 	 	 (100% + dos-overprovisioning-amount)

Where:

• rps is the peak number of HTTP (or whatever other application
protocol the system uses) requests that the PoP is expected to handle
per second, based on the online application’s usage and expected
growth.

• rps-per-core is the number of HTTP (or whatever other application
protocol the system uses) requests the software can process per
second on one CPU core without adding significant queuing delays.
This can be determined by running benchmark tests with the
candidate proxy software.

• conn-reuse is the percentage of requests from clients to the proxy
that reuse an existing network connection. This can be determined by
instrumenting the client or backend servers.

• cps-per-core is the number of new connections per second the
software can accept from clients on one CPU core without adding
significant queuing delays. This number usually is orders of magnitude
smaller than rps-per-core because of the cryptographic math required
to set up a secure connection. This can be determined via benchmark
tests.

• redundancy-amount is the fraction of the proxy servers that can be
out of service at the same time (for planned or unplanned downtime)
without affecting the PoP’s ability to handle traffic. This is determined
by the application provider’s operational policies and practices. Note
that redundancy planning for an edge network also should account
for full-PoP outages. This may mean, for example, having enough
spare capacity to survive an extended outage of any one PoP in a
region.

• dos-overprovisioning-amount is the fraction of extra capacity
provisioned to help survive denial of service (DoS) attacks.

22

It also is important to model memory usage as part of proxy capacity
planning. The basic model is:

RAM needed = concurrent-conns * mem-per-conn + baseline-mem

Where:

• concurrent-conns is the maximum number of concurrent connections
each proxy server is expected to handle from clients. This should be
large enough to accommodate unusual events such as DoS attacks,
client retry floods, and connections accumulating when the backend
service becomes overloaded and slow. 10

• mem-per-conn is the amount of memory used by each connection.
This can be measured during benchmark testing. Note that it includes
both kernel and userspace memory usage.

• baseline-mem is the amount of memory needed to run the server and
the proxy software at idle with no connections.

Caching

Things to determine in this phase of the planning:

• Is edge caching useful for the online application?

• If so, how much server capacity does each PoP need for its cache?

If large numbers of clients fetch the exact same content from the
backend systems, it probably will help to add a caching service at the
edge. The complicated part is determining how big the cache needs to
be: can it fit in RAM on the same servers where the proxies run, for
example, or does it need dedicated servers and/or flash storage?

A good way to forecast the necessary cache size is to write a cache
simulator program. The simulator implements an index of cached
objects' keys in memory, keeps track of the total size of the cached
objects’ values (without actually storing those values) , and evicts keys 11

from the index based on an algorithm such as Least Recently Used

 In addition, the proxy should use defensive measures such as circuit breakers and rate-limiting to limit 10

its exposure to these events. Chapter 8 discusses proxy implementation guidelines.

 A real cache implementation often will use additional space per cached object to achieve other 11

optimizations. For example, many RAM-based caches pre-divide the available memory into chunks of
various fixed sizes and store each object in the available smallest chunk whose size is greater than or
equal to that of the object. A cache simulator program can model this space overhead as needed.

23

(LRU) when the simulated storage space is exhausted. The input to the 12

simulator should be a log of the online application’s requests from real
clients, filtered by geography to approximate the request stream that
the cache will see in a specific PoP. The output of the simulator is the
cache hit ratio for that combination of request pattern, eviction
algorithm, and (simulated) storage size. Repeating the process for
different simulated storage sizes will produce a set of data points similar
to Figure 10.

Figure 10: Example of cache size simulation results

The horizontal dotted line in this chart represents the maximum
possible cache hit ratio for the logs being replayed. This often is well
below 100%, especially for social applications where users constantly
post new content. The cache hit ratio asymptotically approaches this
line as the capacity increases.

Based on the simulation results, the team planning the edge network
can choose a cache size. This is a subjective business decision, as there
is a cost-vs-effectiveness tradeoff.

After choosing a total cache size, the next step is to map it to a server
hardware configuration. The storage devices used for the cache must
have enough space, of course, but they must also provide enough
throughput (“random IOPS,” in storage engineers’ lingo) to keep up with
the expected request workload. Flash drives often end up being a good
fit, as RAM is very fast but has a high cost per Gigabyte, and rotating
disks have a low cost per GB but a very low performance on random
read and write workloads. Some designs use a tiered cache, with the
most frequently-requested content in RAM and the long tail in flash.

 There also are newer algorithms that offer better cache hit ratios than LRU, such as ARC and SIEVE. A 12

cache simulator can help choose the best algorithm for one’s workload.

24

https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/publications/loginonline/sieve-cache-eviction-can-be-simple-effective-and-scalable

With flash storage, write endurance is a concern: each flash drive has a
lifetime limit on how many bytes can be written to it, and this can be a
problem for caches that are constantly overwriting old, stale content
with new, popular content. It is important to choose flash drives whose
lifetime write capacity can accommodate the projected usage. The
cache software can help by reducing write amplification; Chapter 8
describes the technical details.

It is a good practice to shard the cache across many servers based on a
consistent hash of the cache key, both for scalability and to avoid a 13

single point of failure. If possible, the cache should be sized so that if
any one server rack fails or is offline for maintenance, the remaining
servers have sufficient compute and network capacity to to serve the
full cache workload.

Miscellaneous Application Features

This analysis is naturally application-specific, but there are a few criteria
that can help determine whether a backend service is a candidate to
host at the edge:

1. First, can the service operate without having to make many
synchronous calls to backend datacenters while the client is
waiting? By corollary, this means that if the service operates on a
writable copy of any database that is shared with other locations,
the application should tolerate those writes being asynchronous
and eventually consistent.

2. Next, will the service fit in the PoPs? Space for servers and storage
tends to be less plentiful and more expensive in edge colo
datacenters than in backend datacenters.

3. Will a PoP satisfy the security requirements for the service? The
application provider organization may find, for example, that the
locations where they are comfortable putting network equipment
are not necessarily locations where they are comfortable putting a
copy of their user database. Chapter 6 discusses some of the
security considerations for site selection.

 There are several commonly used algorithms, including the traditional ring-based consistent hash, 13

rendezvous hash, and maglev hash. See, for example, Consistent Hashing: Algorithmic Tradeoffs for a
survey of different algorithms’ pros and cons.

25

https://dgryski.medium.com/consistent-hashing-algorithmic-tradeoffs-ef6b8e2fcae8

For many online applications, a PoP provisioned to handle peak user
demand will have substantial idle server capacity during off-peak hours.
In some cases, it is possible to use this spare capacity to run batch
workloads such as analytics, depending on the cost and feasibility of
copying the needed data to the PoPs each day.

26

6. PoP Site Selection
One of the biggest decisions when creating or expanding an edge
network is where to put the PoPs.

Usage metrics, along with the RUM data discussed in Chapter 4, can
provide a coarse-grained starting point: a list of geographies where the
online application has a large concentration of users experiencing poor
network performance.

The critical next step is for the application provider organization to filter
this list:

• Legal review: Determine whether the candidate locations are in
countries where the organization is allowed to operate, and where
the laws adequately protect the provider’s equipment and the users’
data.

• Financial review: Determine the cost implications of the candidate
locations, including tariffs on importing equipment and any applicable
taxes on revenue.

• Engineering review: Determine whether the candidate locations have
colo datacenters with diverse Internet connectivity.

Sometimes, based on this review, the easiest way to support a large
user community in a country will be to put a PoP in another country
nearby.

Once candidate countries are vetted, the search for a colo datacenter
can proceed based on a technical and business evaluation, including:

• Connectivity: Of the top ISPs used by the online application’s users in
the region, how many can be reached via network peering at each
candidate colo site? Do multiple, competing vendors of IP transit 14

(Chapter 7) offer their services at the site?

• Capacity: Does each candidate colo site have enough space, power,
and cooling for the application provider’s PoP? This question is usually
phrased as, “can this facility provide N racks of space for our
equipment that uses M kilowatts of power per rack?” Also, is there

 PeeringDB is a useful resource for this.14

27

https://www.peeringdb.com/

space for the application provider to keep spare parts on hand:
network optics, replacement drives drives for servers, etc?

• Physical plant: Does each candidate site have redundant power and
cooling? Is the physical security sufficient? Will it be convenient to
ship equipment to the facility?

• Support: Does each candidate site offer a “remote hands” service for
any maintenance or troubleshooting work that requires physical
access to the service provider’s equipment? Is onsite support
available 24x7?

• Commercial considerations: How much does each candidate colo site
cost? Are the contract terms suitable? Does the colo provider have
experience and a good track record? Will a relationship with the colo
provider be beneficial when expanding into additional regions in the
future?

If the PoP needs a large amount of server capacity, the application
provider may face a dilemma: colo facilities that are great for network
peering are in high demand, so space there is scarce and expensive.
When this happens, one solution is to disaggregate the PoP design: put
the network routers in a colo site that is good for connectivity, put the
servers in another datacenter nearby that has more and cheaper
capacity, and connect the two with a metro optical network over dark
fiber. Chapter 7 discusses this option in more detail.

28

7. Network Connectivity
Figure 11 shows the network equipment and connections typically
found in a PoP.

Figure 11: PoP networking overview

Connecting to the Internet

The fundamental piece of network equipment that connects a PoP to
the rest of the Internet is the edge router. There may be multiple of
these in a PoP, for redundancy. The fundamental characteristics of an
edge router are that it speaks the BGP protocol to exchange routing
information with other systems, it can keep track of millions of routes to
the rest of the Internet and select the right route for each packet at 15

wire speed, and it has a large (but finite) number of network ports.

An online application’s clients typically are scattered among thousands
of different external networks. In addition to talking to all those users’
ISPs, the application’s backend systems may also need to exchange a lot
of data with external services like payment providers. The challenge
when building a PoP is to obtain connectivity to all of those networks
with high performance and reliability while controlling cost. The two

 Measuring BGP in 2023 - Have We Reached Peak IPv4?, APNIC, 202415

29

https://blog.apnic.net/2024/01/09/measuring-bgp-in-2023-have-we-reached-peak-ipv4/

major cost components are the price of connectivity itself (monthly
recurring OpEx) and the ports on the edge routers (a scarce capital
resource).

There are a few different types of connectivity available, and it is
common for an application provider to use a mix of all of them: transit,
private peering, and public peering.

Transit

IP Transit is a service sold by third parties who operate large global or
regional networks. The application provider leases one or more links
from a transit supplier and connects these links to their edge routers.
The transit links normally provide connectivity to and from the entire
public Internet.

The normal pricing model for these links is based on peak utilization in
both directions: the transit provider measures the peak bandwidth used
during every 5-minute interval of the month, takes the 95th percentile
largest measurement, and bills based on that amount.

Transit is good for coverage: with a transit link plugged into a single
router port, the application provider can talk to the entire public
Internet. The drawbacks of transit are the cost and the lack of speed
guarantees.

Private Peering

Private peering connections are links from the online application
provider directly to some other network (called the peer), which might
be consumer ISP whose customers use the online application, or a SaaS
provider used by the application’s backend systems.

Private peering is often settlement free, meaning that neither side bills
the other for using the link. Each party benefits financially by not having
to pay a transit provider in the middle, and technologically by gaining a
more direct network path to the peer. Some major consumer ISPs,
however, offer only paid peering; i.e., they will let application providers
connect directly to them in exchange for a utilization fee. The value
proposition for the application provider in such cases is that the paid
peering, while not necessarily cheaper than transit, offers a faster and
more reliable way to reach the ISP’s users.

30

Each connection to a private peer uses at least one router port, and
possible multiple ports for capacity or redundancy. Therefore, private
peering makes sense for for peers with whom the application provider
exchanges enough network traffic to justify the dedicated port(s).

If the application uses third-party cloud providers, the PoP can be a
good place to connect to those clouds’ networks. Most cloud operators
offer some type of direct-connection service that is similar to private
peering, but with the added feature of being able to route between the
private, internal address spaces of the application provider’s on-
premises and cloud-hosted networks, for internal server-to-server
communication.

Public Peering

With private peering as a good solution for talking to high-traffic peers,
and transit to cover the long tail of low-traffic networks and networks
who do not have a presence at the same colo as the application
provider’s PoP, there is a space in the middle that is served by Internet
Exchange (IX) providers.

An IX is a connectivity service operated by a third party with a presence
in the colo, or sometimes provided as a service by the colo datacenter
provider. Networks that have PoPs in the colo can connect links from
their edge routers to a router provided by the IX. Any of these networks
can then establish peering with any of the others. 16

IX pricing typically is a monthly fixed fee per connected port.

Other Connectivity Considerations

The physical connection from the application provider’s routers to a
transit provider, IX, or private peer located in the same colo datacenter
is usually a fiber cross-connect that the colo provider sets up and
maintains for a monthly fee.

It is useful to evaluate the total cost of ownership when comparing
connectivity options. For example, settlement-free peering is free in the
sense that there is no charge for transferring data, but the cross-
connects add a recurring cost, and the router ports have depreciation
and a support contract. These fixed costs mean that the links become

 In network engineering terms, this can be either traditional, bilateral peering where the two networks 16

establish a BGP session, or multilateral peering via a route server.

31

more cost-effective as their utilization increases. Dividing the monthly
peak bandwidth usage for each link by the monthly cost will provide an
effective unit cost of bandwidth that can be compared across transit,
private peering, and IX links.

After establishing a private peering link, it is important for the
application provider to tune its traffic steering (Chapter 9) to maintain a
healthy peak utilization on the link. The peer has committed to devote
their scarce resources — router ports, people’s time — to the link and
will be disappointed if the bulk of their communication with the
application provider still flows through transit or shifts to some other
PoP.

Intra-PoP Connectivity

If the PoP contains servers, it needs an internal network to connect the
server racks to each other and to the edge routers. The requirements
for this network depend in large part on the software services selected
to run in the PoP. Proxying uses almost exclusively north-south
bandwidth: the proxy servers talk mostly to things outside the PoP
(clients on one side of the proxy, backend datacenters on the other) but
exchange little or no data with other servers in the same PoP. However,
if the proxy servers also talk to a distributed cache located in the PoP,

32

they need significant bandwidth east-west, to the other server racks in
the same facility.

If the servers’ do not have much east-west communication, it is possible
to use a minimalist topology by just connecting the rack switches’
uplinks directly to the edge router (Figure 12). This has the advantages
of simplicity and low cost, but it consumes a quantity of router ports
proportional to the number of server racks.

33

Figure 12: Simplest topology for PoPs with mostly north-south traffic

If the services running in the PoP need more east-west bandwidth, or if
the traffic pattern is mostly north-south but with a large number of
server racks, a better approach is to add a switching layer in between
the rack switches and the edge router. This intermediate layer can be as
simple as two or four aggregation switches to which the rack switches
and edge routers connect (Figure 13). If the PoP is very large, this layer
can be a Clos fabric.

34

Figure 13: 4-post aggregation switch tier to handle east-west traffic

Figure 14 shows a variant where the PoP is disaggregated into a peering
site and a compute site, with metro optical links connecting the two.

Figure 14: Disaggregated PoP networking

Connecting to the Rest of the Application Provider’s Infrastructure

There are several options for connecting the PoP to the application
provider’s backend datacenters (and, if needed, other PoPs) : 17

• If the traffic volume between the edge and the backend datacenter is
very small, an IPsec tunnel over IP transit may suffice.

 One scenario where it is useful for the application provider’s backbone network to provide fast PoP-to-17

PoP connectivity is when the traffic steering (Chapter 9) sends the client to talk to an edge service in one
PoP but the best connection to the client’s ISP is through another PoP. This can happen frequently if the
service is something stateful, like a chat server.

35

• A more common solution is to rent an IP transport circuit from a third
party provider. Such circuits provide a contracted amount of network
bandwidth between two points for a fixed monthly fee.

• At larger traffic volumes, it is feasible for the application provider to
lease dark fiber rather than transport links. This requires an initial
purchase of optical transceiver equipment for both ends of the link,
but the recurring cost of the dark fiber is lower than a transport
circuit.

Note that Figure 11 shows a dedicated backbone router handling the
communication with the application provider’s other sites. It also is
possible for the edge router to handle the backbone routing, combining
both functions in one box.

Additional Optimizations

Between the client and the PoP, packet sizes are limited in practice to
something smaller than 1500 bytes. Most clients announce that they
can handle packets up to that size, but sometimes there are tunnels in
the middle (for a VPN, for example, or to carry IPv4 traffic through an
IPv6 network) that further limit the usable packet size. It is a good
practice for Internet-facing servers to be conservative about packet
sizes.

For communication between servers in the PoP, however, it is
advantageous to use larger packets. Most servers and network switches
can be configured to support “jumbo frames,” providing a maximum
packet size of approximately 9000 bytes. On the servers, the CPU cost of
processing incoming or outgoing network data is mostly a factor of the
number of packets sent, not the number of bytes. Thus, for large data
transfers between servers, being able to split the data into fewer
packets frees up CPU capacity.

If the application provider controls the backbone network between the
PoP and backend datacenters, the servers in the PoP also can use large
packets to talk to backend services. In addition, the backbone operator
can use technologies such as MPLS to reserve bandwidth for critical
applications and near-instantly reroute around failed links.

36

8. Edge Software Services
The development of edge software services is a broad topic, and the
details depend heavily on the application provider’s specific
requirements, capabilities, and choice of technology stack. This chapter
offers design recommendations that have proven useful for many
application providers.

Prerequisites

The drawback of running software at the edge is that the deployment
complexity grows proportionately to the number of PoPs. It is essential
for the application provider organization to invest in automation to keep
the edge software manageable. In particular, deployment, configuration
management, and monitoring processes all need to scale painlessly as
the PoP count grows.

Proxying

There are multiple open source HTTPS reverse proxies that work well as
edge proxies, and some of them also are available in “enterprise”
versions with support contracts from commercial vendors. It also is
possible to write one’s own edge proxy software if needed (for example,
if the application uses a custom network protocol).

Load Balancing

The servers running the proxy software in a PoP should be load-
balanced by a layer 4 load balancer. While it is technically possible to
eliminate the load balancer and let the PoP’s network switches
distribute the load directly to the proxy servers by hashing the incoming
packets’ source addresses , there are two major disadvantages to that 18

approach:

• If different racks in the PoP contain different numbers of proxy
instances, but the aggregation switch layer (as described in Chapter 7)
hashes an equal number of incoming traffic flows to each rack, the
proxy servers will end up unevenly loaded.

 The common way to do this is to configure the servers to establish BGP sessions with their rack 18

switches and advertise themselves as the next hop for the proxy VIP, configure the rack switches to share
an aggregated advertisement upward to the switches or routers above them, and enable ECMP based on
a 5-tuple hash at each layer.

37

• When proxy instances are added or removed, the network will not
necessarily ensure that new incoming packets on existing connections
go to the right instance.

Layer 4 load balancers solve both those problems.

It is possible for the edge proxies themselves to do load balancing
among the servers in the backend datacenters to which they proxy
requests. However, to reduce configuration complexity, it is better to
have the proxies talk to a VIP in each backend datacenter, with a layer 4
or 7 load balancer listening on the VIP and distributing the workload
among the servers there.

Security

Edge proxies are, by definition, reachable from the Internet. This makes
them prominent targets for attackers. A thorough coverage of network
and server security is outside the scope of this playbook, but the
following practices are a good starting point for Internet-facing proxy
servers.

• Harden the proxy servers, as they contain sensitive configuration
data including the private keys for TLS certificates. If possible, do not
store any static secrets such as private keys unencrypted in the
filesystem. Remove any software packages that are not needed for
the operation and management of the proxies. Strictly limit the set
of user and role accounts that can log into the proxy servers. Stay
up-to-date with security patches for all the layers of software on the
servers.

• Consider disabling the generation of core files for the proxy
processes, because they contain the transiently decrypted contents
of messages passing between clients and backend services. (Doing
this will complicate crash debugging, of course.)

• Always encrypt communications between physical sites, no matter
how “dedicated” or “private” the links between them are. In
addition, ensure that the software does proper certificate
verification when establishing connections to remote sites, to
prevent man-in-the-middle attacks. Ideally, use mutual TLS (mTLS)
— i.e., have the proxy and backend server both use certificates to
prove their identity to each other.

38

• Configure strict firewall rules in both directions. Not only should
incoming connections be restricted to the expected protocols and
ports on the proxy servers, but processes running on the proxy hosts
should only be able to establish outbound connections to a short list
of expected destinations.

• Automate the configuration and monitoring of servers and networks
to avoid inconsistencies.

• Employ a defense-in-depth strategy, with multiple layers of security
in case any one layer is compromised. For example, set up host-level
firewall rules on the proxy servers and firewall rules on the edge
routers, but also configure firewall rules in the backend datacenters
to keep the proxies from talking to unintended internal destinations.

• To defend against DDoS attacks, deploy abundant proxy server
capacity. This sometimes means significantly overprovisioning,
compared to the peak legitimate request load. Implement rate-
limiting per client and, for HTTP-based protocols, per requested URL.
For this rate-limiting to be effective, it usually needs to share state
asynchronously between proxy servers, lest a clever attacker sneak
“under the radar” by spreading requests across a large number of
servers and staying just under each one’s individual throttling
threshold.

Performance

To provide a speedup, proxy servers need to reuse existing connections
to the backend datacenter. Proxy implementations usually maintain
pools of idle connections for this purpose. The application provider
running edge proxies should track the fraction of requests from clients
that have to wait for the establishment of a new backend connection;
this fraction should be as close to zero as possible.

There are many server settings that must be tuned to ensure optimal
proxy performance. For example, on some operating systems, a TCP
connection that has been idle for a short time will fall back into slow
start mode. This default can be overridden to enable the proxy to send
and receive data more aggressively on reused connections. The
operating system’s default buffer sizes and choice of congestion control
algorithm also may need to be overridden for a high-throughput proxy.

39

Teams managing proxy servers should create a set of OS performance
tunings as part of their automated server configuration management. 19

Caching

There are a few open source web cache implementations currently
available. Some application providers develop their own cache
software.

Recommendations for developers of caches:

• Use a consistent hash function on some key (e.g., the URL of the
cached object) to shard across nodes. Note that a cache distributed
across server racks will need ample east-west bandwidth; Chapter 7
discusses how to design the PoP network hardware for this.

• For a cache in flash storage, the big complication is write endurance.
Each flash drive has a lifetime maximum number of bytes that can be
written to it; after that, the drive becomes read-only. A typical cache,
when confronted with an ever-changing set of popular content, will
do a lot of writes to replace cold content with hot content. The cache
simulation approach described in Chapter 5 can provide an estimate
of the needed write endurance: assume each cache miss requires one
write to storage, add up the object sizes for all the cache misses over
the simulation, and extrapolate to an N-year period, where N is the
planned capital depreciation lifetime of the flash drive.

• The write endurance problem is exacerbated by write amplification. A
straightforward LRU cache implementation in flash will spend a lot of
time overwriting small objects in random locations on the flash drive.
Internally, the flash storage is divided into large blocks, and modifying
even one byte within a block means erasing and rewriting the entire
contents of the block. When the cache software overwrites N bytes in
flash storage, the flash ends up writing N * A bytes internally. A, the
write amplification factor, depends on the specific access pattern, but
it is always greater than or equal to one. And it is N * A, rather than N,
that is subtracted from the drive’s aforementioned lifetime write
limit. The controllers in flash drives try to reduce write amplification
by over-provisioning, managing a pool of free space, and buffering
writes; but a cache that does a lot of small, randomly distributed

 A good starting point is Dropbox’s blog post on Optimizing Web Servers for High Throughput and Low 19

Latency.

40

https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency

overwrites will still have a large value of A. The cache developer can
help reduce write amplification by designing a cache layout that
minimizes random writes using, for example, a journaling design. 20

• If objects in the cache can expire, this can result in a thundering herd
of requests to the backend systems when hundreds of clients all try to
fetch the same popular object that has just expired. This can be
prevented by building a synchronization mechanism within the cache.

• For many online applications, cache deletion is a critical use case. For
example, applications that support user-generated content need a
way for moderators to delete content that violates the application’s
rules. With a distributed cache based on consistent hashing, it is
possible that copies of a given object will end up in multiple cache
nodes due to servers coming in and out of service. Therefore a good
practice when deleting is to send the deletion request to every cache
server, rather than just the server that the hash currently selects.
There still can be problems if a cache server containing the object is
offline at the time of deletion and revives the object when it comes
back to life. One option for handling that case is to maintain a log of
deletions and replay it against nodes that are being brought back into
service. Another is to give each object inserted into the cache an
expiration time N seconds in the future, thus incurring more frequent
cache misses in exchange for a deletion safeguard.

• Finally, some applications will benefit from placing a middle tier of
cache in between the backend systems and the edge, so that cache
misses at the edge have a chance to be served from, say, a regional
cache in each continent rather than traveling all the way to the
backend datacenters. Simulations can help determine if this approach
is useful for a specific application’s access pattern.

 Meta’s Reduced Insertion Point Queue is an example of a flash cache layout that supports LRU 20

semantics with low write amplification. If the cache software uses such a layout to manage its storage in
an append-only manner (with erasure of full blocks to reclaim space when the cache fills up), it can use
the Zoned Namespace (ZNS) feature of compatible flash drives to take more direct control of the flash
usage. That will reducing the need for over-provisioning, allowing more of the flash space to be used for
cached data.

41

https://www.usenix.org/system/files/conference/fast15/fast15-paper-tang.pdf
https://zonedstorage.io/docs/introduction/zns

9. Traffic Steering
Previous chapters mentioned that clients would be sent to edge
services in the nearest PoP via some unspecified magic. The technology
for doing this is called traffic steering, and there are two main variants:
DNS and anycast routing.

DNS

With DNS traffic steering, an edge service has a different IP address in
each PoP. For illustrative purposes, assume that the edge service has
the domain name app.example.com and is hosted in the following
locations: 21

To find the edge service, the client normally sends a DNS query for
app.example.com to some intermediate DNS server. This intermediate
server might be one run by the client’s ISP, or perhaps a free public DNS
service. Assuming that this intermediate DNS server does not have the
answer in cache, it forwards the query to the DNS server for
example.com.

Figure 15: DNS-based traffic steering

The DNS server for example.com, called an authoritative server, is
configured to return different answers for app.example.com, depending

PoP Edge service IPv6 address

Seattle 2001:DB8:0001::10

Frankfurt 2001:DB8:0002::10

Singapore 2001:DB8:0003::10

 For simplicity, this example shows only IPv6 addresses. In common practice, the service will have both 21

IPv4 and IPv6 addresses, and clients that support both will use the Happy Eyeballs algorithm from RFC
8305 to choose which one to use.

42

on where the client is. The authoritative DNS server looks at the source
IP address for the request, determines which PoP is the best one to
serve requests coming from that location, and returns the IP address of
the service in that PoP. For example, if the DNS request has originated in
Europe, the authoritative DNS server might choose to return the
address of the service in Frankfurt, 2001:DB8:0002::10. And if the DNS
request has originated in North America, the authoritative DNS server
might choose to return the address of the service in Seattle,
2001:DB8:0001::10. To keep the lookups fast, the authoritative server
often will use a precomputed table that maps client IP prefixes to the
preferred PoP for each.

While this process sounds straightforward, there are complications that
must be solved in the design of the authoritative DNS server:

• dealing with intermediaries that obscure the client’s location,
• defining how exactly to choose the “best” PoP for a client,
• and adapting to capacity and availability limitations.

DNS Intermediaries

In figure 15, note that the query arriving at the authoritative DNS server
comes from the intermediate DNS server, rather than directly from the
client. If the authoritative server tries to choose a PoP based on the
source address of the query, it will end up with a PoP close to the
intermediate server — which might not be anywhere near the client.

To solve that problem, intermediate DNS servers are allowed, although
not required, to pass along information about the original DNS client’s
location. The mechanism for this is the EDNS Client Subnet extension,
documented in RFC 7871. An intermediate DNS server can encode its
client’s IP address as an extra field in the DNS request that it sends on
to the next DNS server. For privacy purposes, the intermediate resolver
sends only the first 24 bits of the client’s IPv4 address, or the first 56
bits for IPv6. Note, though, that some operators of intermediate DNS 22

servers, including at least one major public DNS service , take an even 23

stricter privacy stance by not sending the Client Subnet extension at all.

 To enable DNS traffic steering to interoperate with DNS caching intermediate servers that send the 22

EDNS Client Subnet in forwarded requests also use the subnet value as part of the cache key when
caching the responses.

 1.1.1.1 DNS Resolver FAQ, Cloudflare.23

43

https://developers.cloudflare.com/1.1.1.1/faq/#does-1.1.1.1-send-edns-client-subnet-header

Choosing the Best PoP for a Client

If the application provider has implemented a RUM data collection
system, as described in Chapter 4, that data can be used to build a
mapping from client IP prefixes to preferred PoPs.

In practice, there are other criteria in addition to network performance
that affect the preferred choice of PoP. For example, if two PoPs offer
similar performance for a client, but the client’s ISP peers with the
application provider at only one of those PoPs, that one is preferable.
Or if the PoP that ranks as the fastest based on the RUM data has just
come back online after an extended outage and its caches are empty,
the application operator may want to readmit traffic slowly.

A good practice is to run a continuous, offline map-building process that
applies such business rules to compute the currently preferred
destination for each client IP prefix, and publish the output of this
process to the authoritative DNS servers once every few minutes. The
authoritative DNS server can then specify a small Time-to-Live (TTL)
value for its responses, to limit how long clients and intermediate DNS
servers may cache the results.

Adapting to Capacity and Availability Changes

If a PoP is getting overloaded, the authoritative DNS server can send
less work there. Clients already talking to an edge service in that PoP
may be stuck there, but new client sessions will be directed to other
PoPs by the time the TTL has expired. In practice, not all clients and
intermediaries on the Internet pay attention to DNS TTLs, so fully
draining the long tail of traffic from a PoP often takes longer than
expected.

If a PoP suddenly goes offline — for example, because of a power failure
or software bug — the authoritative DNS server can stop including that
PoP in DNS answers, but new clients will continue being steered there
for at least the TTL. For services that want a reduced disruption in this
situation, one option is to have each PoP’s service VIPs ready to turn on
at some other location, so that DNS clients who learn the VIPs before
the TTL expires have a place to land. Note, though, that clients who 24

 Note for network engineers: it is possible to automate this failover by having a backup site advertise a 24

shorter prefix that contains the prefix used by the PoP’s VIPs. While the PoP is alive, its longer, more
specific prefix will be the preferred destination.

44

already had connections to the failed PoP will experience errors when
new packets on those connections get routed to a new location that is
not expecting them.

Anycast Routing

The common alternative to DNS traffic steering is anycast routing. In the
anycast routing design, a given edge service has the same public, virtual
IP address (VIP) in many PoPs. The client talks to that shared VIP, and
the packets end up at the closest PoP, based on the network’s notion of
“closest.”

Building upon the example from the DNS section, we add a VIP to the
edge service in all locations. (It is useful to also give the edge service a
unique IP address in each PoP, for use in monitoring and
troubleshooting.)

Choosing the Best PoP for a Client

With anycast routing, the process of connecting a client to the closest
PoP is automatic, although “closest” in this case basically means the
smallest number different networks between the source and
destination. Two hops across an ocean are treated as a shorter path 25

than three hops across town. Operators sometimes need to apply traffic
engineering: router configuration overrides to move incoming and
outgoing traffic to the desired paths.

Some organizations using anycast routing have opted for a hybrid
“regional anycast” scheme in which DNS determines the client’s
location and returns a region-specific anycast VIP that is advertised by
the PoPs in that region. This helps prevent edge cases where the fewest-
hops path would have taken the traffic across an ocean and back. 26

PoP Edge service IPv6 address

Seattle 2001:DB8:0F00::10

Frankfurt 2001:DB8:0F00::10

Singapore 2001:DB8:0F00::10

 In BGP, the routing protocol that the edge routers use to exchange routing information with the 25

outside world, the number of Autonomous Systems between point A and point B is one of the primary
criteria for choosing a route, but this can be overridden by configuring a higher or lower “local
preference” value to prioritize or deprioritize certain routes.

 See, for example, Regional IP Anycast: Deployments, Performance, and Potentials.26

45

https://www2.cs.uh.edu/~gnawali/courses/cosc6377-f23/papers/Zhou23.pdf

An advantage of anycast routing is that it inherently aligns traffic
steering with the application provider’s peering relationships, in
contrast to DNS-based steering where that alignment must be done in
the map-building software. In addition, anycast tends to help with DDoS
defense by distributing incoming attacks against multiple PoPs, in
contrast to DNS-based steering where an attacker can point at a PoP-
specific IP address to try to overload that site.

Adapting to Capacity and Availability Changes

A drawback of anycast traffic steering is that it operates like an on-off
switch. There is not a way to shed load from a PoP by directing new
client connections elsewhere while keeping existing connections pinned
to the PoP. Similarly, when bringing a new PoP online, there is not a way
to start routing requests to it without breaking existing connections. 27

However, it is possible to shift load among PoPs by applying traffic
engineering to the route advertisements.

Choosing a Traffic Steering Strategy

DNS-based and anycast-based traffic steering both have unique
advantages and challenges. Historically, DNS has offered more precise
and flexible control, as well as lower latency for clients , although this 28

may change in the future if more operators of intermediate DNS servers
stop supporting for the EDNS Client Subnet feature for privacy reasons.
Anycast makes it easy to align traffic steering with network topology
and capacity — but harder to align traffic steering with non-network
considerations such as PoP server capacity. Anycast also has become
popular among CDN operators because of its DDoS-defense
advantages. 29

Both techniques have ardent champions and opponents. A pragmatic
way for an organization to choose a steering technology is based on the
expertise required. Steering via DNS requires software engineers to
build data pipelines and control-loop algorithms, whereas steering via
anycast requires network engineers to do traffic engineering.

 This is not a problem, of course, for applications that do not depend on long-lived client connections. 27

For example, DNS servers themselves are often load-balanced with anycast routing.

 See, for example, the graphs in the “Initial results” section of Intelligent DNS based load balancing at 28

Dropbox.

 Cloudflare and Cachefly, for example, have written about their use of anycast traffic steering to spread 29

incoming DDoS attacks across a larger defensive surface area.

46

https://www.cloudflare.com/learning/cdn/glossary/anycast-network/
https://www.cachefly.com/news/anycast-network-explained-the-future-of-internet-routing-and-ddos-mitigation/
https://dropbox.tech/infrastructure/intelligent-dns-based-load-balancing-at-dropbox
https://dropbox.tech/infrastructure/intelligent-dns-based-load-balancing-at-dropbox

Some application providers add an additional step: once the primary
traffic steering system chooses a PoP and the clients sends its first
request, the server-side software knows with greater certainty where
the client is located. If necessary, the server can then tell the client to
talk to a different PoP for subsequent requests — e.g., by rewriting links
to point to some hostname like app-seattle.example.com that bypasses
the normal traffic steering. This technique can improve performance if
the DNS or anycast steering has made a bad decision, although it causes
operational headaches for web-based applications if third parties start
hot-linking to PoP-specific URLs.

After implementing any traffic steering mechanism, the application
provider should monitor the actual client-to-server network
performance and compare it to the best possible performance. If the
RUM data indicates that the closest available PoP is a 10 millisecond
RTT away from a client, but the traffic steering is sending the client to a
PoP 300 milliseconds away, it is time to start troubleshooting.

47

10. Rollout and Operation

Like any major infrastructure project, launching an edge network for the
first time is a complicated and risky endeavor. Some recommendations
for the initial deployment:

• Launch incrementally. Turn up one PoP and start sending a small test
group of users through it. If the edge network is using anycast routing
for traffic steering, it is best to use DNS to send only the test group to
the anycast address while keeping the majority of users unaffected.

• Do no harm. Examine all available product and engineering metrics to
ensure that nothing has broken for the users in the test group.

• Verify the wins. Use RUM data and product metrics to confirm that
the PoP has delivered the expected improvements. 30

• Scale up. Steer more users to the first PoP until it is operating at its
planned workload. Turn up the rest of the PoPs. Test drains and
failover between PoPs.

After launching:

• Monitor continuously. Track the performance and reliability of the
edge services in all PoPs. Measure proxies’ connection reuse and
caches’ hit rate, especially after launching changes to the application
or infrastructure.

• Continue scaling. Incrementally add edge connectivity, servers, and
backbone bandwidth as needed. As the edge network grows more
complex, buy or build software that tracks of the utilization of every
network link and predicts when to order more capacity.

• Enter into peering agreements with external networks. This is an
ongoing process due to the long tail of potential peers and the time

 Many organizations have robust A/B testing systems that measure both expected and unexpected 30

results of changes. These A/B systems usually identify test cohorts based on things like cookies or user
IDs, whereas edge traffic steering maps users into groups based on completely different attributes such
as client IP prefix. But, while difficult, it can be valuable to develop an integration between between the
A/B-test and traffic-steering systems, in order to quantify edge improvements using the same
methodology and tooling as all of one’s other product initiatives.

48

needed to build connections across companies (both the
technological and the interpersonal kinds of connections).

• Track costs. As described in Chapter 7, track the effective cost per unit
of peak bandwidth usage for each network link. Similarly, track the
cost per peak concurrent user for edge compute.

• Define criteria for expansion. After building out the initial PoP sites,
how should the organization decide when/whether to expand into
additional locations? For example, should the decision to build a PoP
in a new geography be driven by user growth in that area, or by
monetization potential, or perhaps by application speed metrics? The
right answer is inherently organization-specific, but it is helpful to
codify an internal decision-making framework.

Finally, after successfully building an edge network, some application
providers may decide to take the next big step closer to the user:
extending their edge presence into client ISPs’ networks. Several
companies have built “off network” server appliances that run their
edge server software but are physically located in consumer ISPs’
datacenters. This setup can be a win for both parties. In exchange for 31

providing the datacenter space and power for the appliances, the ISP
saves on incoming bandwidth costs because the cache substantially
reduces the amount of data they need to receive from outside their
own network. In exchange for providing the servers and software, the
the application provider gets closer to the client for better performance
and also saves on outbound data transfer costs. Running server
appliances off-network adds significant security and operational
challenges, but for application providers operating at very large scale it
can be an effective way to improve service for users.

 See, for example, Netflix’s Open Connect Appliance and Meta’s Facebook Network Appliance.31

49

https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://partners.facebook.com/network/landing_page/

	Acknowledgements
	1. Introduction
	2. Edge Network Basics
	3. Roadmap
	4. Real User Monitoring
	5. Planning Edge Services
	6. PoP Site Selection
	7. Network Connectivity
	8. Edge Software Services
	9. Traffic Steering
	10. Rollout and Operation

